Application of minimal disc covering to the analysis of
wildlife signs

M. S. Ridout

School of Mathematics, Statistics and Actuarial Science,
University of Kent, Canterbury, Kent CT2 7NF, U.K.

email: m.s.ridout@kent.ac.uk

Wordcount: 7146

Summary

1. We consider the analysis of data that comprise two-dimensional locations of animal
signs, for example footprints, scrapes or scats, where individual animals cannot be
distinguished. We ask what is the minimum number of animals that could have
generated these signs, assuming that individual animals move within circular home
ranges of given radius. This provides an estimated lower bound for the true number

of animals present.

2. Calculating the minimum number of animals in this way is equivalent to a well-
known problem in computational geometry known as the minimal disc covering
problem. Applications arise for example in the location of facilities and in the
design of wireless networks but, as far as we are aware, this is the first application

to ecology.

3. Although the problem is well-known, no algorithm is known that is guaranteed
to provide a minimal disc covering of a set of locations. We describe randomized
algorithms for this problem. The algorithms aim to generate coverings with a small
number of discs. By running multiple times we can generate minimal or close-
to-minimal coverings. The performance of the algorithms is demonstrated using

various artificial data sets.

4. The methodology is applied to tiger pugmark data from a survey of the Kerinci
Seblat National Park in west-central Sumatra. We investigate how the estimated
minimum number of tigers changes with the assumed radius of the home range and
demonstrate that, even with modest computational effort, it is usually possible to

obtain an answer that is close to the true minimum.

5. In practice, the methodology is only likely to be useful for rare species, but here we
argue that an estimate of the minimum number of animals that must be present is
of some interest. Estimates of the true number of animals present are of course of
greater interest, but these inevitably require more sophisticated methods of anal-
ysis based on careful assumptions about the sampling method. We believe that
estimates of minimum number, interpreted carefully, can provide a useful supple-

ment to estimates of true population size.

Keywords
Clustering; geometric optimization; home range; minimum enclosing circle; randomised

algorithm; Sumatran tiger

Introduction

The minimal disc covering problem is to find the smallest number of discs of radius r
that are needed to cover a set of n points in the plane. There are no constraints on the

positioning of the discs, in particular they are allowed to overlap.

In the application that led to our interest in this problem, the points are the locations of
signs, such as footprints, scrapes, nests or scats, left by a species of wildlife. We ask what
is the minimum number of animals that could have generated these signs, assuming that

individual animals move within a circular home range of radius r.

There are no known algorithms that are guaranteed to find a solution to the minimal disc
covering algorithm. The main contribution of this paper is to present new randomized
algorithms that find reasonable coverings that are not necessarily minimal. By running
the algorithms multiple times and selecting the best solution, we can generally obtain
results close to the true minimum in reasonable computation time, at least for problems
involving up to a few hundred points. These algorithms are conceptually simple and

relatively straightforward to program; in the Supporting Materials we provide code in R.

We apply the methodology to a data set comprising the locations of Sumatran tiger
pugmarks, to estimate the minimum number of tigers present. The dependence of the
estimate on the assumed radius of the home range is investigated. Whilst there is certainly
more interest in estimating the actual number of tigers present, this can only be done
using sophisticated analyses that rely on several assumptions (e.g. Guillera-Arroita et
al., 2011; Guillera-Arroita et al., 2012). We believe that the methodology presented here

offers a simple and intuitive complement to such analyses.

There are many variants of minimal disc covering problem. For example, the Euclidean p-
centre problem fixes the number of discs and seeks the minimum disc radius that is needed
to obtain a covering. Or one may fix both the number of discs and their radius and seek the
maximum number of points that can be covered. Agarwal and Sharir (1998) give a general
overview of geometric optimization problems of this type. In general, these problems are
difficult computational problems, with no known algorithms that are guaranteed to find
the best solution. We briefly review previous algorithms for the minimal disc problem
in the Methods section before describing the new algorithms. The performance of these
algorithms is then investigated using artificial data before application to the tiger pugmark
data.

Methods

In this section, we first describe a simpler geometric problem, that of finding the smallest
circle that encloses a set of points. This well-studied problem forms the basic building

block of our algorithms.

We then consider the minimal disc covering problem itself, which is known to be ‘hard’,
specifically strongly NP-complete (Fowler et al., 1981). We give a short overview of some
approximate algorithms for the minimal disc covering problem that run in polynomial
time and that guarantee to find a number of discs that is no more than ¢ times the
true minimum, where ¢ > 1 is termed the approzimation ratio. However, for the type of
application that we have in mind, having a guaranteed worst-case approximation ratio
is only useful if this ratio is close to one. Unfortunately, none of the known algorithms
can guarantee this in reasonable computational time. Moreover, several of the algorithms

described appear to be quite difficult to implement.

We therefore explore alternative approaches. We discuss a greedy algorithm that is con-
ceptually simple, but demonstrate that this is not always effective. Instead, we introduce
some heuristic alternatives that are reasonably straightforward to program. Specifically

we discuss two classes of randomized algorithms that we term grow and shrink.

Note that a disc covering gives a clustering of the n points where the clusters may overlap.
We are concerned only with identifying the points that are covered by each disc, not with
the precise geometric location of the disc, which is uniquely identified only if points cannot

be covered by a disc of smaller radius.

The minimal enclosing circle problem

The minimal enclosing circle problem is to find the circle of smallest radius that encloses
a set of n(> 2) points, P, in the plane. The minimal enclosing circle is unique and passes
through at least two of the points of P. If it passes through exactly two points, the centre
of the circle is the midpoint of the line segment joining these two points. Otherwise, the

circle is determined by any three points on the circumference.

To find the minimal enclosing circle, we have used the algorithm of Elzinga and Hearn
(1972), which builds progressively larger circles until all points are enclosed. Our im-
plementation is a translation into R of the Fortran code provided by Hearn, Vijay and
Nickel (1995). Whilst calling the Fortran code directly from R would be expected to give
a faster implementation, we wanted to maintain transparency of the code at the R level.
To increase the speed of the algorithm we have restricted the search to consider only the
convex hull of P, obtained using the R function chull, and we have also taken the initial
circle to be the circle whose diameter is the line segment connecting the two most distant
points of the hull.

The Elzinga-Hearn algorithm is straightforward to implement and the authors report
that in test cases its run time increased approximately linearly with n. However, its
complexity is at least O(n?) (Drezner and Shelah, 1987). More efficent algorithms are
known, including the O(n) algorithm of Megiddo (1983) and the recursive randomized
algorithm of Welzl (1991), for which the expected run time is also O(n), but we have not

investigated whether these would lead to significant improvements in computational time

for our algorithms.

Algorithms for the minimal disc covering problem

Let P denote the set of n points for which we require a minimal disc covering. Let d(P, Q)
denote the Euclidean distance between points P and () in P and define the points to be
r-neighbours if d(P, Q) < 2r. Note that every point is an r-neighbour of itself.

Points that are not r-neighbours cannot be covered by a disc of radius r and therefore a
useful first step is to partition P into disjoint subsets P, Pa, ..., Pm, such that no two
points that are in different subsets are r-neighbours. The minimal disc covering problem
can then be addressed separately for each subset of points in turn. The partition is easily
generated by running a single linkage cluster analysis and cutting the dendrogram at a
height of 2r. We therefore focus our attention on sets P for which every point has at least

one r-neighbour.

Because the minimal disc covering problem is NP-complete, attention has focused on
polynomial-time approximation schemes that guarantee to achieve a specified approxima-

tion ratio. We now give a brief overview of algorithms of this type.

Polynomial-time approximation algorithms

Hochbaum & Maass (1985) introduced the first algorithm of this type, with ¢ = (1+1/k)?,
where k is a positive integer chosen by the user. However, whilst the running time is
polynomial, the polynomial is of high degree, d = 2[k+v/2]? + 1, where [z] is the smallest
integer not less than x, giving for example d = 9,19,51 for &k = 1,2,3, respectively.
This makes the algorithm impractical for even moderate values of n. Nonetheless, the
shifting strategy proposed by Hochbaum and Maass (1985) has been exploited in several

subsequent algorithms.

The Hochbaum and Maass algorithm is expensive because it repeatedly solves the covering
problem exactly on small areas of the plane. Franceschetti et al. (2001) give a similar
algorithm but restrict the disc centres to lie on a grid. This leads to a larger approximation
ratio ¢ = ¢(1 + 1/k)? (¢ > 1), but the running time is O(Cn), where C' depends upon c.
Unfortunately, whilst the running time increases only linearly with n, the constant C' is
prohibitively large for even modest values of q. For example, Xiao et al. (2004) state that
q = 6 would require C' ~ 10%0. Franceschetti et al. (2001) review other algorithms and
provide a useful table (their Table 1) of their approximation ratios and running times.
More recently, Fu et al. (2007) have developed an O(n(logn)?(loglog n)?) algorithm, which
also uses the shifting strategy, and gives ¢ = 2.8334, but no details are given of actual

run times.

A greedy algorithm

One natural approach to the minimal disc covering problem is to use a greedy algorithm
that successively positions discs to cover the largest possible number of points that have
not already been covered, until no points remain. However, it is easy to contruct examples
for which this algorithm fails to generate a minimal solution. Figure la shows a simple
example involving 6 points. The greedy algorithm leads to a 3-disc covering, but clearly

the optimal solution requires just 2 discs.

Figure 1. Failure of the greedy algorithm. Panel (a) shows six points that can be
covered by two discs, but for which the greedy algorithm gives three discs. Panel (b)
shows a construction due to Franceschetti et al. (2001) that is described in the text.

More generally, Franceschetti et al. (2001) note that the approximation ratio of the greedy
algorithm is bounded by 1 + logn and give an explicit construction involving n = 3 X
2% — 2 points for which the approximation ratio is k/2, for any positive integer k. This
construction is illustrated for £ = 4 in Figure 1b. Clusters of 2,3,6 and 12 points are
placed at points A, B, C' and D and at points E, F', G and H. The points can be covered
by two discs, as indicated by the dashed circles, each of which covers 23 points. However,
the greedy algorithm begins by covering the 24 points in the clusters at D and H. The
clusters at C' and G are positioned just too far from D and H to also be covered by the
first greedy disc. The greedy algorithm then generates the remaining three solid circles,

moving from right to left.

Heuristic algorithms for the minimal disc covering problem

We consider algorithms that, like the greedy algorithm, sequentially identify points that

have not yet been covered and find a disc that covers the point identified. However, we

select points randomly rather than in a greedy way. In practice, we run the algorithms

several times, and select the best solution obtained.

We therefore consider a function cover (P) which returns a set of discs that cover the n

points in the set P. This function has the following generic form:

cover < function(P)
Uu<+"Pr
C+0
while (U #) begin

U is the set of points not yet covered

F* Ik

C is the set of covering discs

P + choose.point(U) # select a point P € U that is not yet covered
D < disc.cover(P,r) # find a disc of radius r that covers P
C «<CuD # add this disc to the set of covering discs
D < cover.set(D) # identify the points covered by this disc
U «~—U\D # remove these points from uncovered set

end

return C

end

The function cover.set(), which identifies the points that are covered by a specified
disc, is a straightforward deterministic function. We shall assume that the function
choose.point (), which selects a point from a set of points, does so by simple random
sampling, though in principle a wide range of alternative deterministic or stochastic se-
lection mechanisms could be considered; for example, selection could favour points that
lie on the convex hull of /. Note that the greedy algorithm selects P so that the size of

the set D is maximized, thus requiring a form of look-ahead.

The remaining function, disc.cover () identifies a disc D of radius r that covers the point
P. The greedy algorithm selects the disc that covers the greatest number of points that
have not yet been covered. We consider two less greedy approaches, giving algorithms
that we refer to as grow and shrink. Both algorithms compute the disc D by generating
the set of points, D, that are covered by the disc. Clearly D must be a subset of the set
of r-neighbours of P. We let rad(D) denote the radius of the minimum enclosing circle of
D.

Algorithm grow sets D = {P} initially and adds points sequentially. At each stage,
the point to be added is chosen from the set of points that could be added whilst still

maintaining rad(D) < r. The algorithm terminates when there are no such points.

Algorithm drop sets D to be the full set of r-neighbours of P initially. If rad(D) > r, a
point on the circumference of this circle is selected and removed from D. The point P

itself is never dropped in this way. This process is repeated until rad(D) < r.

We now discuss each of these algorithms in more detail.

Algorithm grow

Figure 2 shows a single run of the algorithm grow to cover the point P, which is shown
by an asterisk in the figure. Other points that have been included in D are shown as solid
circles. The remaining points are shown as open circles if they are still eligible to the
included in D and as crosses otherwise. Panel (a) shows the point P and its r-neighbours.
Initially, the algorithm picks one of the r-neighbours at random, in this instance the
nearest neighbour of P. The minimum enclosing circle of these two points is shown in
panel (b) as a solid circle; the dashed circle has the same centre, but radius r. At this
point, some of the original r-neighbours of P can no longer be covered by a disc that
covers both P and the first point selected and therefore become ineligible for inclusion in
D. In subsequent panels, additional points are chosen at random from those that remain
eligible and added to D, until no eligible points remain. Note that the point indicated by
the arrow in panel (c), which is covered by the current disc, but is not part of the set D,

is ultimately not covered, as shown in panel (g).

Figure 2. Example of the algorithm grow. The point P is denoted by an asterisk. Points
that have been selected by the algorithm are shown as filled circles, other points are shown
as open circles if they are eligible to be selected at the next stage and as crosses otherwise.

Variants of the algorithm can arise by modifying the way in which a point is selected from
amongst the eligible points at each stage. Specifically, if the eligible points are Q1, . .., Qk,
we select @); with probability proportional to d(P, Q;)*, where « is a real parameter. We
denote the resulting algorithm by grow(a). Setting o = 0 gives simple random sampling,
whereas positive (negative) values of « preferentially select points at are far from (close
to) P. Intuitively, one might expect that negative values of a would tend to increase

the number of points covered and therefore reduce the number of covering discs. In the

limit as o« — —oo, the algorithm selects the nearest eligible point to P, or, if there are
several such points, chooses randomly between them. In Figure 2, the first two points
selected (panels b and c) are the nearest eligible points, but the third point selected is
not the nearest eligible point (panel d). For convenience we use the term grow.random

as an alternative to grow(0) and grow.nearest as an alternative to grow(—oo).

Algorithm shrink

Figure 3 shows a single run of the algorithm shrink to cover the point P. Initially,
in panel (a), all r-neighbours of P are shown as filled circles. Points that lie on the
circumference of the minimum enclosing circle, excluding P itself, are selected at random
and dropped. Note that points that are dropped in this way may nonetheless reappear in
the minimum enclosing circle of the remaining points at a later stage. This is illustrated

by the point marked with an arrow in panels (f) and (g).

Eventually, at panel (k), we arrive at a minimum enclosing circle with radius that does not
exceed r; this is indicated by the solid circle in panel (k). The dashed circle in panel (k)
has the same centre, but the radius is now r. By using the full allowed radius, we capture
the lowermost of the 3 points at the top left of the panel (shown as open circles), which
were eliminated previously. However, it is also possible to move the circle in an attempt to
capture additional points, a process that we term realignment. The result of this is shown
as the solid circle in panel (1). All three points at the top left of the panel (now shown as
closed circles) are covered by the realigned disc. In general, several distinct realignments
may be possible. Realigment is implemented by running the grow(a) algorithm, starting

from the endpoint of the shrink algorithm.

Again, variants of the algorithm can arise by modifying the way in which the point to
be dropped is selected from amongst the points on the circumference of the minimum
enclosing circle. If the eligible points are Q1,...,Qx, we select (); with probability pro-
portional to d(P, Q;)?, where j3 is a real parameter. Setting 3 = 0 gives simple random
sampling, whereas positive (negative) values of 3 preferentially select points at are far
from (close to) P. Intuitively, one might expect that positive values of 8 would tend
to increase the number of points covered and therefore reduce the number of covering
discs. In the limit as 8 — oo, the algorithm always drops the point furthest from P,
or, if there are several such points, chooses randomly between them. We denote the re-
sulting algorithm by shrink(«,) and alternatively use the terms shrink.random and
shrink.furthest as synonyms for shrink(—o0,0) and shrink(—oo,c0) respectively.
Note that in both of these latter algorithms, realignment selects any additional points in

order of their closeness to P, since o« = —o0.

@ (b) (© (d)

x
x
x
x

(e) ® \ (@ \ (h)

@

o

Figure 3. Example of the algorithm shrink. The point P is denoted by an asterisk.
Points that have been eliminated are shown by open circles. Points that are not
r-neighbours of P are shown as crosses.

Overall algorithm summary

The complete algorithm proceeds as follows. First we partition the set P into disjoint
subsets P, ..., Pn, as outlined above. For subset P; we obtain a set of covering discs
C; as the smallest set that results from K; calls to the function cover(P;). The disc

covering for the points in P is then U’anl C;.

We shall assume that K; = K, for all j, though more generally one might wish to choose
K to be dependent on the size of the set P;. Note, however, that if a covering consists
of either one or two discs, then this must be optimal and further calls to the function

cover () are unnecessary.

In the following, when we refer to a specific algorithm, such as grow.nearest, we mean
that this is the algorithm used to implement the function disc.cover () within the func-

tion cover().

Because of their random nature, there is a non-zero probability, that the algorithms
grow(a) and shrink (e, 3) will generate a minimal disc covering of the points in P;, for

any finite values of @ and 8. Thus as K — oo, the probability that a minimal covering

10

will have been identified approaches one.

The limiting algorithms grow.nearest and shrink.furthest generate a disc to cover the
point P in a deterministic fashion, unless there are points equidistant for P, and it may
be possible to construct examples in which these algorithms are unable to find a minimal
covering, though we have not been able to identify any such examples. Of course, in these
algorithms, the starting point P is still selected at random from those available at each

stage.

Results

We begin by applying the algorithms to artificially generated data. We compare the
algorithms grow(«) and shrink(q, 8) for different choices of o and 5. We show that
there is no universally optimal choice for the parameters a and 3, using the examples
shown in Figure 1, and study the performance of the algorithms for random, regular and
clustered point patterns. Finally, we investigate how computing time increases with the

number of points, n, for random distributions of points.

We then apply the methodology to the Sumatran tiger pugmark data.

Failures of the greedy algorithm revisited

Consider first the 6-point example shown in Figure la. Simple probability calcula-
tions show that algorithm grow.random finds the optimal covering with probability 5/9
whereas for shrink.random the probability is 1/2. On the other hand, the algorithms
grow.nearest and shrink.furthest find the optimal solution only if the point chosen

initially is either the leftmost or rightmost point, which occurs with probability 1/3.

Conversely, for the example shown in the right hand panel of Figure 1, the algorithms
grow.nearest and shrink.furthest both find the optimal solution with probability one.
The corresponding probabilities for the algorithms grow.random and shrink.random are
more difficult to compute exactly for this example but simulations indicate that they are

approximately 0.29 and 0.14 respectively.

These contrasting examples show that there is no universally optimal choice for the pa-
rameters a and [in algorithms grow(a) and shrink(c«, 8). However, the calculations
also show that, whilst the greedy algorithm is unsuccessful for both of these examples, any
of the algorithms considered in this paper will find the optimal solution with probability
close to one, provided that K is not too small; for example, K = 30 will ensure a prob-
ability of at least 0.99 even when using the poorly-performing shrink.random algorithm

in the second example.

11

Performance for simulated point patterns

Next we compared the performance of the algorithms for three types of point pattern

simulated on the unit square.

Regular: 100 points from a simple sequential inhibition process with minimum inter-
point distance of 0.075. The process is simulated by generating points randomly
within the unit square, one at a time, and accepting points that are a distance of at
least 0.075 from the nearest existing point. This is repeated until 100 points have

been accepted.
Random: 100 points positioned randomly with the unit square.

Clustered: Simulation of a Matérn process with parents generated as a Poisson process
of rate 10 per unit area. The number of offspring per parent is a Poisson variable
with mean 10 and offspring are generated uniformly on a circle of radius 0.1 centred
at the parent point. Parents are not included in the final set of points. Thus, the

expected number of points per realization is 100 (= 10 x 10).

For a fuller description of these processes see, for example, Illian et al. (2008).

We considered three choices of disc radius (0.05, 0.1, 0.2). For each of these we generated
400 realisations of each type of pattern and ran several versions of the grow and shrink
algorithms with K = 5. A small value of K was chosen to accentuate differences between

algorithms. An example set of simulations with » = 0.1 is shown in Figure 4.

Figure 4. Example of simulated point patterns. From left to right, the patterns are
regular, random and clustered.

Table 1 shows results for five algorithms. The first algorithm was shrink.random without
realignment. The other algorithms were shrink.random, shrink.furthest, grow.random
and grow.nearest. All five algorithms give similar results for the inhibition pattern
with » = 0.05. Elsewhere, there is a clear benefit of including the realignment step in

shrink.random. Furthermore, algorithms grow.nearest and shrink.furthest perform

12

similarly to each other and better than algorithms grow.random and shrink.random. Al-
though the results are not shown in Table 1, algorithms grow(1) and grow(2) were also
run and, as might be anticipated, gave results intermediate between those of grow.random
and grow.nearest. Similarly, algorithms shrink(—oo, 1) and shrink(—oo,2) gave re-

sults intermediate between those of shrink.random and shrink.furthest.

To investigate the performance of algorithms grow.nearest and shrink.furthest in
more detail, we generated 10 patterns of each type and ran the algorithms with K = 250.
The two algorithms gave very similar results. Of the total of 90 patterns, 69 gave minimal
coverings with the same number of discs, for a further 10 shrink.furthest found a
covering with one fewer disc and for the remaining 11 grow.nearest found a covering
with one fewer disc. Table 2 shows the mean minimum number of discs and the median

number of iterations required to first encounter this minimum.

Overall, the results of this section suggest that the most useful algorithms are shrink. furthest
and grow.nearest. Although these algorithms generate covering discs in different ways,

they consistently gave similar results for a range of simulated point patterns.

Computational time

We simulated additional random point patterns to compare run times for shrink. furthest
and grow.nearest and to investigate the effect of the number of points, n. We generated
25 sets of n = 25 x 27 points on the unit square for j = 0, ..., 5 and applied the algorithms
with K = 25 and r = 0.05,0.1 or 0.2, as above. Run times were similar for the two algo-
rithms for n = 25 but run times for grow.nearest increased more rapidly with n than
those for shrink.furthest and for n = 800 grow.nearest took up to one third longer
than shrink.furthest. For n > 100, run times were approximately proportional to n?,
where 6 was dependent on r as well as on the choice of algorithm. For shrink.furthest,
estimates of @ from simple linear regression of the logarithm of run time on log(n) were
1.62 (0.010), 1.40 (0.003) and 1.31 (0.003), for r» = 0.05,0.1 and 0.2, respectively; figures
in parentheses are standard errors. For grow.nearest, the corresponding estimates were

1.71 (0.012), 1.47 (0.005) and 1.36 (0.006).

In these simulations, the density of points per unit area is increasing. We also ran an
identical set of simulations, except that the points were generated on a square with area
proportional to n, so that the density remained constant. Although grow.nearest was
again a little slower than shrink.furthest for larger values of n, differences in run times
were less than 20%. For n > 100, run times were again approximately proportional to n?.
For shrink. furthest, estimates of § were 1.63 (0.048), 1.15 (0.010) and 1.22 (0.006), for
r = 0.05,0.1 and 0.2, respectively. For grow.nearest, the corresponding estimates were
very similar, namely 1.64 (0.055), 1.16 (0.011) and 1.22 (0.008).

13

Application: Sumatran tiger pugmarks

The Sumatran tiger, Panthera tigris sumatrae, is critically endangered due to factors
such as habitat fragmentation, demand for tiger body parts and retaliatory killing of
tigers following conflicts with humans (Linkie et al., 2003; Linkie et al., 2006; Wibisono
and Pusparini, 2010). Figure 5a shows the locations of tiger pugmarks detected in a
survey of the Kerinci Seblat National Park in west-central Sumatra, an area that includes

prime habitat for tigers. This is part of a larger survey (Linkie et al., 2010).

The sampling area was divided into 17 x 17km? grid cells, on the basis that male tiger
home ranges are not expected to exceed 250 km?. Within each grid cell, a survey team
walked a transect of approximately 40km, and recorded GPS locations of sites where
pugmarks were observed; these are shown as dots in Figure ba. Transect length was
proportional to forest habitat coverage within the grid cell and ranged from 4km (10%
coverage, the minimum) to 40km (100% coverage). There are 89 grid cells and a total of

257 pugmarks were identified; 66 cells had at least one footprint.

@\ Qo (b)

Figure 5. Locations of tiger pugmarks along tracks with 17 x 17 km? grid squares. Panel
(b) shows a covering by 45 discs of radius 8.5 km.

A key interest is to estimate the population density of tigers from such data. However, this
is fraught with difficulties due, for example, to the incomplete sampling of the region, the
irregular nature of the transects, the likelihood that the survey teams will fail to detect
some signs and the difficulty of determining how many tigers might have generated a
particular set of signs, since tigers cannot be identified individually from their pugmarks.
Moreover, the tracks are not ‘random’ but follow routes through the rugged terrain along
which tiger pugmarks might be expected to be found. Thus, estimation of population
density will inevitably require complex statistical modelling that incorporates ecologically

realistic assumptions Guillera-Arroita et al. (2011, 2012).

14

Here, however, we ask a different question, what is the minimum number of tigers that
could have produced the observed signs, assuming that individual tigers occupy a circular
home range of maximum radius r? This is exactly the minimum disc covering problem.
Table 3 compares the performance of various algorithms for discs of diameter ranging
from 8.5km, which just fits inside a grid square, to 12.5km, which is large enough to
cover a grid square. For each algorithm we set K = 100 and ran the algorithm 20 times.
We identified a ‘true’ minimum number of discs using more extensive runs of two of the

algorithms, grow.nearest and shrink.furthest, with K = 25000, as discussed below.

The table shows that the algorithms grow.nearest and shrink.furthest again per-
formed similarly and outperformed the algorithms grow.random and shrink.random.
Typically, the latter algorithms found solutions with one or two fewer discs, except for r =
8.5km. For this radius, a covering can be obtained simply by placing a disc in each of the
66 occupied grid squares. However, the minimal covering requires just 45 discs a reduction
of almost one third. Figure 5b shows one such covering, obtained by shrink.furthest.
For larger values of r, the algorithms grow.nearest and shrink.furthest usually failed
to identify the true minimum with K = 100, but the number of discs never exceeded the
‘true’ minimum by more than two, giving a worst-case approximation ratio of 32/30 =
1.067.

Figure 6a shows a 30-disc covering obtained by algorithm grow.nearest. Here, and in
other plots, to resolve the ambiguity in where to position the discs, each disc is centred at
the centre of the minimal enclosing circle of the set of points that is covered by the disc.
These minimal enclosing circles are shown in Figure 6b. The median radius is 11.3 km and
8 of the 30 circles have radius less than 10 km. This sort of supplementary information
may be useful in interpreting the covering, for example if it is thought that most animals

would have a home range smaller than 12.5km in radius.

Table 4 gives more detail about the ‘true’ minimal coverings obtained by the algorithms
shrink.furthest and grow.nearest with K = 25000. The table shows the number of
subsets, m, and the number of discs needed to cover the largest subset. In this example,
the overall performance of the algorithm was always determined by the performance for
this largest subset and the number of times that the minimum was encountered for this
subset is shown, along with the number of runs needed to first obtain the ‘true’ minimum
for the full set of points P.

The algorithms shrink.furthest and grow.nearest found the same number of covering
discs for each value of r, except though for » = 11.5, where shrink.furthest failed to
find a 34-disc covering overall. We therefore ran a further simulation with K=250000.
Table 5 shows the frequencies with which different solutions were found in the combined
set of 275000 runs for r = 11.5 are shown in Table 5. Both algorithms struggle to
find the ‘optimal’ covering for this example. Figure 7 compares the performance of the
two algorithms in terms for values of K up to 1000, treating the empirical frequency

distributions in Table 5 as if they were the true distributions. Figure 7a shows the

15

“ (b)

X

O~

@@
000
OOQ
&

O

Figure 6. Locations of tiger pugmarks along tracks with 17 x 17 km? grid squares. Panel
(a) shows a covering by 30 discs of radius 12.5km, whilst panel (b) shows the a covering
by 30 discs with the same centres but with radius no larger than needed to cover the same
points as in (a). One point near the bottom right of the figure is isolated and ‘covered’
by a disc of radius zero.

expected total number of discs in the minimal covering. For K = 1000, the probability of
finding the true minimum is less than 0.02, and the expected minimum number of discs is
approximately one more than the ‘true’ minimum. Figure 7b shows the probability that
one method will give a better solution than the other, or that the two methods will give
the same result. Algorithm shrink.furthest is slightly more likely than grow.nearest

to give a smaller solution, but if K > 2 the most likely outcome is a tie.

Discussion

We have presented simple heuristic algorithms for the minimal disc covering problem.
The algorithms proceed sequentially, selecting a point that is not yet covered by simple
random sampling and finding a disc that covers that point. The two basic procedures for
finding a disc, grow and shrink, could also include further random selection. However,
except in the pathological example of Figure 1a, deterministic versions of these algorithms,
namely grow.nearest and shrink.furthest, were more effective. These algorithms had
similar performance in a variety of simulated and real examples but grow.nearest was

generally slower, particularly as the number of points, n, increased.

One advantage of a search approach that generates multiple candidate solutions is that
it lends itself to incorporation of secondary optimisation criteria. For example, we might
seek minimal coverings that minimize or maximize the number of points that are covered

by more than one disc. Related to this, one may wish to compare different solutions that

16

™] e

™ —
8 @« |
2 o ©
5 ™
u—
o
& 2 31 _ :
Q 3 tied /
e < [} e
S ™ o
< e < |
8 o o L
B ~~._ shrink better
D o grow
u% ? S b

) o row better
shrink 9
o e o4 T -
N o
T T T T T T T T T T T T
1 10 100 1000 10000 50000 1 10 100 1000 10000 50000
K K

Figure 7. Comparative performance of shrink.furthest and grow.nearest for the
tiger footprint data with » = 11.5, calculated using the empirical distributions in Table 5.

are generated by the algorithm. In terms of the subsets of points that are covered, this
is a problem of comparing potentially overlapping clusterings. Alternatively, one might

wish to make more geometrical comparisons. These issues will be explored elsewhere.

Each iteration of the algorithm generates a disc covering and the overall minimum from K
runs is chosen. Computational time is approximately proportional to K and for simulated
random patterns of up to 800 points, the rate of increase with the number of points, n

was less than nt"™ for the disc radii that we considered.

It is difficult to give general advice about how to choose K. One approach is to link
the problem to the species estimation problem, where here the ’species’ are the different
possible numbers of discs that can be generated by the algorithm. Finch, Mendell and
Thode (1989) suggested this approach for evaluating the use of multiple random starting
points for continuous optimization problems, using the the Good-Turing statistic (Good,
1953) to estimate the probability that a further run from a new random starting point
would discover a solution that had not been encountered previously. A difficulty in ap-
plying this approach to the current problem is that the minimum covering is often found
much less frequently than a covering with one more disc, as in Table 5. The Good-Turing
estimate is then frequently zero even when the true probability is not zero. It may be
useful to investigate interval estimates of the probability (Almodevar et al., 2000) or more

generally to consider adaptive stopping rules.

We applied the algorithms to tiger pugmarks, to estimate the minimum number of adult
animals that could have left the pugmarks, assuming a circular home range of given radius,
r. The results of the analysis can be communicated easily to non-technical audiences, for
example policy makers and conservation managers. Graphical displays such as Figure

6 are potentially useful, but need to be interpreted in conjunction with details of the

17

sampling effort; for example, ‘gaps’ in the figure may represent limited sampling effort
rather than absence of tigers. The central assumption, that the home range is circular
is of course simplistic, but allows progress to be made. The effect of varying r is easily
investigated. The data set did not distinguish male and female pugmarks, but if this were
possible, the data could be analysed separately for males and females, allowing different

home range sizes.

Whilst clearly less useful than an estimate of true population size, an estimate of minimum
number of tigers present may still have value to conservation biologists as an index of
population size, i.e. a measure that is correlated with the true population size. Such
indices can be useful in conservation biology to monitor changes in population size over
time and to assess whether interventions have been effective, provided that indices are
based on surveys that involved similar effort and spatial coverage. Jhala et al. (2011)

discuss indices of tiger abundance.

Acknowledgments

I am grateful to Guru Guillera-Arroita and Matt Linkie for providing access to the data
and detailed comments on the manuscript. The idea of applying minimal disc covering
to the tiger pugmark data first arose during discussions with Guru Guillera-Arroita and

Byron Morgan.

References

Almudevar, A., Bhattacharya, R.N. and Sastri, C.C.A. (2000) Estimating the probability
mass of unobserved support in random sampling. Journal of Statistical Planning and
Inference, 91, 91-105.

Agarwal, P.K. and Sharir, M. (1998) Efficient algorithms for geometric optimization.
ACM Computing Surveys, 30, 412—458.

Burt, W.J. (1943) Territoriality and home range concepts as applied to mammals. Journal
of Mammalogy, 24, 346-352.

Drezner, Z. and Shelah, S. (1987) On the complexity of the Elzinga-Hearn algorithm for
the 1-center problem Mathematics of Operations Research, 12, 255-261.

Elzinga, J. and Hearn, D.W. (1972) Geometrical solutions for some minimax location

problems. Transportation Science, 6, 379-394.
Finch, S.J., Mendell, N.R. and Thode, C. Jr. (1989) Probabilistic measures of adequacy of

a numerical search for a global maximum. Journal of the American Statistical Association,

84, 1020-1023.

Fowler, R.J., Paterson, M.S. and Tanimoto, S.L. (1981). Optimal packing and covering
in the plane are NP-complete. Information Processing Letters, 12, 133—137.

18

Franceschetti, M., Cook, M. and Bruck, J. (2001) A geometric theorem for approximate
disk covering algorithms. http://paradise.caltech.edu/papers/etr035.pdf.

Fu, B., Chen, Z. and Abdelguerfi, M. (2007) An almost linear time 2.8334-approximation
algorithm for the disc covering problem. In Algorithmic Aspects in Information and

Management: Lecture Notes in Computer Science, Vol. 4508, pp. 317-326.

Good, I.J. (1953) The population frequencies of species and the estimation of population
parameters. Biometrika, 40, 237-264.

Guillera-Arroita, G., Morgan, B.J.T., Ridout, M.S. and Linkie, M. (2011) Species occu-
pancy modeling for detection data collected along a transect. Journal of Agricultural,
Biological and Environmental Statistics, textbf16, 301-317.

Guillera-Arroita, G., Morgan, B.J.T., Ridout, M.S. and Linkie, M. (2012) Models for
species-detection data collected along transects in the presence of abundance-induced
heterogeneity and clustering in the detection process. Methods in Ecology and Evolution,
textbf3, 358-376.

Hearn, D.W., Vijay, J. and Nickel, S. (1995) Codes of geometrical algorithms for the
(weighted) minimum circle problem. European Journal of Operational Research, 80, 236—
237.

Hochbaum, D. S. and Maass, W. (1985) Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM, 1, 130-136.

Ilian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008) Statistical Analysis and Mod-
elling of Spatial Point Patterns. Wiley: Chichester, UK.

Jhala, Y., Qureshi, Q. and Gopal, R. (2011) Can the abundance of tigers be assessed from
their signs? Journal of Applied Ecology, 48, 14-24.

Linkie, M., Deborah J. Martyr, D.J., Holden, J., Yanuar, A., Hartana, A.T. Sugardjito, J.
and Leader-Williams, N. (2003) Habitat destruction and poaching threaten the Sumatran
tiger in Kerinci Seblat National Park, Sumatra. Oryz, 37, 41-48.

Linkie, M., Chapron, G., Martyr, D.J., Holden, J. and Leader-Williams, N. (2006) Assess-
ing the viability of tiger subpopulations in a fragmented landscape. Journal of Applied
Ecology, 43, 576-586.

Linkie, M., Guillera-Arroita, G., Smith, J. and Rayan, M. (2010) Monitoring tigers with
confidence. Integrative Zoology, 5, 342—-250.

Meggido, N. (1983) Linear-time algorithms for linear programming in R? and related
problems. SIAM Journal on Computing, 12, 759-776.

Welzl, E. (1991) Smallest enclosing disks (balls and ellipsoids). In “New Results and New
Trends in Computer Science” (H. Maurer, ed.), Lecture Notes in Computer Science, 555,
359-370.

19

Wibisono, H.T. and Pusparini, W. (2010) Sumatran tiger (Panthera tigris sumatrae): A

review of conservation status. Integrative Zoology, 5, 313-323.

Xiao, B., Cao, J., Zhuge, Q., He, Y. and Sha, E. H.-M. (2004) Approximation algorithms
design for disk partial covering problem. International Symposium on Parallel Architec-
tures, Algorithms and Networks (ISPAN’04), p. 104.

20

Table 1: Performance of five algorithms, with K = 5, for simulated point patterns. The
table shows the minimum number of discs found by each algorithm, averaged over 400
simulated patterns. The pooled standard error of the means is also shown.

Algorithm
Radius shrink. shrink. shrink. grow. grow. Pooled
(r) Pattern = random® random furthest random nearest SE
0.05 inhibition 58.94 58.79 58.96 98.75 59.01 0.090
0.05 random 46.33 46.02 45.93 45.98 45.94 0.115
0.05 clustered 36.60 35.78 34.86 35.50 34.91 0.412
0.1 inhibition 30.71 29.08 28.36 28.96 28.43 0.051
0.1 random 25.39 24.05 23.10 24.06 23.04 0.062
0.1 clustered 15.26 14.68 13.71 14.38 13.71 0.184
0.2 inhibition 12.73 12.11 10.86 11.60 10.82 0.036
0.2 random 11.37 10.73 9.65 10.31 9.63 0.037
0.2 clustered 9.25 8.84 7.69 8.5 7.68 0.088

* algorithm shrink.random without realignment

Table 2: Performance of algorithms shrink.furthest and grow.nearest with K = 250.
Each row of the table summarizes results from 10 simulated point patterns, giving the
the mean minimum number of discs found and the median iteration number on which the
minimum was first encountered.

Mean minimum Median number of
Radius number of discs iterations

(r) Pattern shrink grow shrink grow
0.05 inhibition 57.7 57.6 6.5 8.0
0.05 random 44.6 44.6 5.5 4.0
0.05 clustered 35.4 35.3 10.0 17.5
0.1 inhibition 26.6 26.5 63.0 52.5
0.1 random 21.7 21.7 58.5 55.5
0.1 clustered 12.8 12.8 5.0 4.5
0.2 inhibition 9.7 9.6 36.0 34.0
0.2 random 8.6 8.6 22.0 31.0
0.2 clustered 7.1 7.1 2.0 2.0

21

Table 3: Performance of four algorithms for the tiger data, for discs of different radius.
Each algorithm was run 20 times with K = 100. The ‘true’ minimum number of discs is
based on a larger run with K = 25000. The upper part of the table shows the mean of
the minimum number of discs found in each run and the lower part shows the number of
runs in which the algorithm found the ‘true’ minimum.

Algorithm
Radius ‘True’ shrink. grow. shrink. grow.
(r) minimum random random furthest mnearest
Mean minimum number of discs
8.5 45 45.10 45.05 45.00 45.00
9.5 40 42.45 42.30 40.50 40.65
10.5 36 38.65 39.00 36.95 37.00
11.5 34 36.70 36.45 35.35 35.05
12.5 30 32.45 32.50 31.20 31.40
Number of runs that gave ‘true’ minimum
8.5 45 18 19 20 20
9.5 40 0 0 10 7
10.5 36 0 0 1 0
11.5 34 0 0 0 0
12.5 30 0 0 0 1

Table 4: Performance of algorithms shrink.furthest and grow.nearest with K =
25000. The table shows the number of subgroups of points (m), the number of discs
needed to cover largest subgroup (Cjnqz), the frequency with which the optimal solution
was found for the largest subgroup and the iteration number on which the optimum was
first found.

Radius Groups ‘True’ Freq of opt First found
(r) (m) minimum C,,,, shrink grow shrink grow
8.5 11 45 23 6927 7014 4 4
9.5 7 40 33 141 141 129 413
10.5) 36 30 7) 624 2718
11.5 4 34 29 0 2 >25000 1872
12.5 3 30 26 9 16 1377 478

Table 5: Frequency distributions of the number of discs needed to cover the largest subset
of points using algorithms shrink.furthest and grow.nearest with K = 275000 for
r=11.5.

Algorithm Number of discs needed
29 30 31 32 33 34 35 36 37 38

shrink.furthest 5 4453 34002 85901 91707 46308 11307 1252 65 O
grow.nearest 3 3991 32454 85418 92802 47437 11585 1255 54 1

22

